Augmenting Multi-Instance Multilabel Learning with Sparse Bayesian Models for Skin Biopsy Image Analysis
نویسندگان
چکیده
Skin biopsy images can reveal causes and severity of many skin diseases, which is a significant complement for skin surface inspection. Automatic annotation of skin biopsy image is an important problem for increasing efficiency and reducing the subjectiveness in diagnosis. However it is challenging particularly when there exists indirect relationship between annotation terms and local regions of a biopsy image, as well as local structures with different textures. In this paper, a novel method based on a recent proposed machine learning model, named multi-instance multilabel (MIML), is proposed to model the potential knowledge and experience of doctors on skin biopsy image annotation. We first show that the problem of skin biopsy image annotation can naturally be expressed as a MIML problem and then propose an image representation method that can capture both region structure and texture features, and a sparse Bayesian MIML algorithm which can produce probabilities indicating the confidence of annotation. The proposed algorithm framework is evaluated on a real clinical dataset containing 12,700 skin biopsy images. The results show that it is effective and prominent.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملCo-Sparse Textural Similarity for Image Segmentation
We propose an algorithm for segmenting natural images based on texture and color information, which leverages the co-sparse analysis model for image segmentation within a convex multilabel optimization framework. As a key ingredient of this method, we introduce a novel textural similarity measure, which builds upon the co-sparse representation of image patches. We propose a Bayesian approach to...
متن کاملSpike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning
We introduce a variational Bayesian inference algorithm which can be widely applied to sparse linear models. The algorithm is based on the spike and slab prior which, from a Bayesian perspective, is the golden standard for sparse inference. We apply the method to a general multi-task and multiple kernel learning model in which a common set of Gaussian process functions is linearly combined with...
متن کاملMaximum Margin Multi-Instance Learning
Multi-instance learning (MIL) considers input as bags of instances, in which labels are assigned to the bags. MIL is useful in many real-world applications. For example, in image categorization semantic meanings (labels) of an image mostly arise from its regions (instances) instead of the entire image (bag). Existing MIL methods typically build their models using the Bag-to-Bag (B2B) distance, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014